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Abstract 

A large number of systems are implemented using regular interconnected topologies. 
Markov analysis of such systems results in large state spaces. We explore symmetry, in par- 
ticular rotational and permutational, of such systems to achieve a significant reduction in 
the size of the state space required to analyze them. The resulting much smaller state spaces 
allow analyses of very large systems. We define equivalent classes of states and develop an 
algorithm to generate small state spaces and the corresponding Markov chain for systems 
with permutation symmetries. The state space generation process is also simplified. We 
demonstrate our technique using several examples. Our technique is very useful in the exact 
analysis of large systems. 
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1    Introduction 
A large number of systems are implemented using a regular interconnected topology. Regu- 
larity is defined in terms of connectivity of a node, i.e., degree of a node and connections to 
its neighbors. A structure is regular with respect to a function if the nodes of the structure 
are renumbered using that function and there exists a link renumbering such that the re- 
sulting structure is isomorphic to the original topology. In such a case, the relative position 
of a node is of no importance. Any of the nodes can be numbered as node 1. For example, 
in a two-dimensional torus interconnected structure, as shown in Figure 1, each node has 
a degree of four. Each node (i,j) is connected to nodes i — 1 and i + 1 in ith dimension 
and nodes j — 1 and j + 1 in the jth dimension. Any of the nodes can be numbered as 
node (0,0). The structure can be redrawn and is isomorphic to the original structure. There 
are several examples of regular structures. In the analysis of such systems one need not be 
concerned with the individual configuration of the system but all isomorphic configurations 
can be treated as a single class. Another example of a structured system is an n-dimensional 
binary cube or in general any fc-ary n-cube. In some of the structures, we may have regular- 
ity in only certain dimensions. For example, in a two dimensional mesh if one dimension is 
connected as a ring but the second dimension is only a linear array then regularity is present 
in the dimension with the ring structure only. 
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Figure 1: A 5 x 5 torus network. 

Another variation in these structures could be that there is a control node connected to 
all nodes of the structures belonging to a particular dimension or dimensions. The control 
node affects the operations of all the nodes it is connected to in an identical fashion. An 
example of such a class of regular structures is processors/memories or processors/processors 
connected using a crossbar switch. One processor or one memory is connected to each 
column or row. We use the terminology processor/memory just to distinguish the column 
and row connections in the crossbar system. Without the loss of generality, we assume that 
processors are connected to column connections in the crossbar and memories are connected 



to row connections. The model of crossbar we use here is that a cross point connects a 
column processor to a row memory. If a particular processor fails then all the cross points 
connecting it to different memories are no more useful for the system operation. Similarly, if 
a memory fails, the same holds for the cross points connecting that memory to any processor. 
In the reverse direction, if all cross points in a row fails then the processor cannot perform 
any meaningful operation. The same relationship holds for a memory and the corresponding 
cross points in that column. 

1.1    Motivation 
In the analysis of a system for reliability or performance, our goal is to identify situations or 
probabilities of occurrence of such situations when a desired configuration is not available due 
to failures or other reasons. There are performance implication for each system configuration. 
For example, consider a scenario where we are interested in knowing, when P' out of P 
processors and Q' out of Q memories are not available if processor, memories, or cross 
points can fail individually. In the analysis, we need to consider all scenarios when the 
system fails to deliver the required performance. Since the components can fail in any order 
and at any location, all combinations of failure must be considered. In a P processors, Q 
memories, and P*Q cross points system, there are P+Q+P*Q components. A large number 
of cross point failures can be tolerated before the system really fails. Moreover, with each 
failure, we may like to model some fine behavior relevant at the time of fault occurrence 
and system reconfiguration. So a Markov chain may be generated where each state in the 
Markov chain corresponds to one state of the system. This chain can be analyzed to compute 
the metrics of interest. Analysis of such systems, combinatorially or otherwise, results in a 
large number of system states which must be considered. In particular, if we assume a two 
state model for each component, i.e., processor, memory, or cross point, we may have up to 
2(P+Q+P*Q) states and a large number of them are operational states. It can be easily seen 
that the analysis becomes tedious even for a small number of components. 

To simplify the analysis, most analysts assume that either cross points failure may not 
be very critical as there are large numbers of them, and therefore, only consider processor 
and memory (end point) failure. Another approximation in analysis is made by considering 
the three subsystems independently. The probabilities of required numbers of processors, 
memories, and cross points being available are calculated separately and approximate results 
are synthesized. But, when finer behavior is to be included in the model, such as a fault 
and error handling model [16] for cross points, then we need to perform the analysis using 
Markov methods and generate a Markov chain, keeping track of all possible states. A 
moderate 4x4 systems with eight end points has 224 states. Any larger system than that 
is almost impossible to analyze. Such difficulties are demonstrated using the example of 
analysis of a fault tolerant system described in the next section. 

Regular structures, however, have symmetry which must be exploited for state space 
generation. With the symmetry, the number of states can be significantly reduced while fine 
behavior can be modeled at each transition if so desired. We develop techniques to generate 
efficient state space exploring of such symmetries and demonstrate the performance and 
effectiveness of our approach. 

To motivate the problem further, we first give an example of a fault tolerant system 
in Section 2 and show how the number of states can be reduced.    Then we develop a 
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Figure 2: Meshkin Architecture 

general technique to generate a smaller state space exploiting the symmetry of the structure. 
In particular, we look at n-dimensional structures and exploit permutational symmetries. 
Similar techniques can be applied to rotational or any other well-defined symmetry. Basic 
classes of permutations of such structures are defined and we develop an algorithm to reach 
the basic class from a given arbitrary permutation in Section 4.2. We show the possible 
state space reduction using several examples and list some basic permutations for 3x3, and 
2x2x2 torus-connected systems in Section 4.3. Then we present the results for a larger 
(4 x 4) system. Finally our conclusions are presented in Section 5. 

2    An Example Fault Tolerant System 
Component redundancy is used to achieve high reliability and fault tolerance [7, 8] to tolerate 
many failures before the system services are not available. Since near coincidence failure 
may make the system fail, it is necessary to model the fine behavior of the system using 
a Markov chain. Naive modeling of such systems results in a state space that could be 
extremely large. For example, Figure 2 shows a fault tolerant system using a mesh-based 
voter. It has a triple modular redundancy. Three processor modules and three memory 
modules are interconnected using a mesh (cross bar equivalent) interconnection. These 
interconnection units are called Bus Interface Units (BIUs). The operation is as follows: 

1. For each data request, all processors generate a request synchronously, using their 
respective buses. One V-H unit on each horizontal bus transfers the request to that 
horizontal bus. This unit is called a master unit. Other V-H units (called checker 
units) on that bus compare the request of their respective vertical and horizontal bus 
and determine if the request being transmitted on the horizontal bus is correct. If any 
inconsistency is detected, the mesh enters a reconfiguration mode using mesh control 
signals. Otherwise the memory is allowed to generate the response. 

2. When memories generate responses, one H-V unit on each vertical bus transfers that 
response to that vertical bus and to the processor. This unit is the master unit on the 
vertical bus. The other V-H units (checker units) on each vertical bus compare their 



Figure 3: A Graph Model for Meshkin 

respective responses with the response being transmitted by the master unit. Again if 
an inconsistency is found, the mesh enters a reconfiguration mode. 

3. As long as sufficient units are available on each bus (to be determined by the actual 
implementation and fault tolerance requirement) the bus operation can continue. 

4. Any unit can be a master unit as long as its source of data is from an operational 
processor or memory. A failed processor/memory results in effective failure of the 
those BIUs to which it is connected as source of data. Thus, a processor failure 
effectively fails the corresponding V-H unit. Similarly, a memory failure effectively 
fails the corresponding H-V units. 

The V-H and H-V unit at a location in mesh may be two independent units or the 
same unit (operationally). In the latter case, failure of one implies failure of the other. 
If a processor has failed it does not matter if the H-V units connected to its bus are 
operational or not. Similarly, if a memory has failed, it does not matter if the V-H 
units connected to its bus are operational or not. 

The system has the following implied failures: 

(a) Failure of a processor (memory) implies failures of all V-H (H-V) units connected 
to it. 

(b) Failures of all V-H (H-V) units connected to a horizontal (vertical) bus imply 
failure of the corresponding memory (processor). 

The communication mechanisms in the Meshkin architecture can be specified using a 
graph model as shown in Figure 3. A path in the graph is up if every component on that 
path is up. If a component fails, then all paths which use that component fail. The success 
and failure criteria are specified using the availability of a set of paths. 

Due to the richness of the interconnection, this architecture can tolerate a large number 
of BIU failures and still may be operational. Suppose the success criteria is that as long 
as one processor can communicate with one memory and vice-versa, the system remains 
operational. In one actual implementation of this architecture [8], BIUs have their own fault 
detection and isolation circuitry to allow a single channel operation. Thus in one specific 
scenario, out of 3 + 9 + 9 + 3 component system, as long as some particular four of them 
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Figure 4: 36 States of Mesh to Model Meshkin 

(one processor, one memory and the two BIU units connecting them) are operational, the 
system is operational. A naive model generates more than a million states. Even a smart 
fault tree model of this system will still generate more than 25,000 states for this system. 

Since the model is so symmetric, after considering implied failure, we may simply track 
the status all the BIUs in the mesh. As long as there is one V-H unit along with its 
corresponding H-V unit operational, the system is operational. To demonstrate this in the 
paper and to keep things manageable, we make a further simplification to keep the state 
space even smaller. We assume that a V-H and the corresponding H-V units are tightly 
coupled for failures and failure of one implies failure of the other. This reduces the number 
of combinations which we need to track. Even this simplification generated more than 
10,000 states using a tool like HARP [16] where input was specified using a fault tree after 
modifying the fault tree. We encourage readers to try their favorite tool and report to us if 
they get any significant reduction in number of states using the input language of the tool 
without making any simplifying assumptions. 

Two permutation of mesh states are equivalent if the net effect is the same. For example, 
in a fully operational system, failures of individual processors are indistinguishable. The 
same applies for memories as well as for the first BIU failure. However, this cannot be 
modeled as redundancy in the fault tree as individual BIUs affect the processors and memory 
differently. For example, failure of two BIUs in a column and the memory element in the row 
corresponding to the operation BIU essentially makes the processor in that column unusable 
but another memory element failure does not create the same situation. Thus all situations 
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Figure 6: State Expansion in Markov Chain 

with failures of two BIUs and one memory element are not identical. The system state is 
defined by the exact fault locations. There could be situations where the system states are 
equivalent. If such equivalences are accounted for one can then model the system using 36 
states, as shown in Figure 4. 

In this figure, a U means the corresponding BIU is up along with its source of data. A 
D means the BIU or its source is down. Any state is equivalent to one of the permutation 
of one of the states. A permutation here can be obtained by exchanging rows or columns or 
both. Thus a state with three row vectors (U U D; U U D; U U U) is equivalent to (D U U; 
D U U; U U U) and so on. Note that the performance of the system in the two states that 
are equivalent is identical and, therefore, the reward associated with these states is identical 
in performability modeling. 

A markov chain can then be generated, as shown in Figure 5. We do not show all the 
arcs or label all of them, but it is easy to see that the model reflects the exact behavior of 
the system and is sufficient for further analysis. For example, in Figure 6 we expand state 
4 by injecting one fault at a time. It can sustain 7 BIU failures, three processor failures, 
and 3 memory element failures. Thus there are 13 possible next states. However, several 
of these states are equivalent, as shown in Figure 6. Note that, in the process, we also get 
a transition rate from one state to another state. For example, in Figure 6, transition rate 
from state 4 to state 6, 7, and 9 is 2B each and to state 10 it is B. Similarly to state 14, 
and 23, the transition rates are 2P and P, respectively. In case any of these components are 
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repairable, the reverse transition can also be generated from any of the next states to state 4 
with the appropriate rate. This system may otherwise require up to 215 states. A significant 
reduction (36 instead of 215, several orders of magnitude) can be achieved. Sometimes, we 
may need to keep track of some other states and that depends on what particular metric is 
of importance in the analysis. 

3    How to Get the Reduction 
In order to get the reduction there are several helpful hints a system analyst can provide. In 
the example above, the interaction among processors, memories, busses, and bus interface 
modules is very regular. 

For an n-dimensional structure, to explore permutational and/or rotational symmetry, 
we need to specify the following parameters for the efficient state space generation: 

1. The structure of system interconnection using a multi-dimensional structure format 
specifying connectivity of the system and permutation and rotational symmetry. 

2. End connection (control) nodes affecting the nodes in one or more dimensions specifying 
depend or affect operators. 

3. Group vs individual affects:   How a component or a group of components behaves 
together.    \ 

4. Distinguishable and non-distinguishable component failures and reward structure in 
each case. 

5. Possible structure of a state tuple (what components need be specifically tracked or 
need not be tracked in a state tuple). 

The nodes whose individual failures need not be distinguished can be specified as a 
group as is the case in modeling using fault trees. Language constructs such as depends on 
or affects can be used to specify the implied failures. The structure of the system can be 
specified using a multidimensional structure. The permutation symmetries can be specified 
for each dimension. The exact nature of this specification is still being researched and is 
beyond the scope of this paper. Our ultimate goal is to develop a language to be able to 
specify such behaviors as completely as possible and is part of our future research. We 
restrict ourselves to simply demonstrate that such a specification can and does lead to the 
significant reduction in the size of the state space. 

The size of the state space also depends on what information needs to be tracked and what 
can be hidden. For example, in the Meshkin system the state space representation includes 
only the states of the components in the two dimensional mesh. The end connection nodes 
(processors and memories) are not represented because we are not interested in tracking 
their individual states. In some other situations, we may be interested in distinguishing 
between a row with all BIUs failed vs a row with the corresponding row control element 
failed. In that case, the state space would be larger (but still not as large as obtained by 
a naive technique). Each state with one or more rows or columns of D has more than 
one version, specifying whether the corresponding row/column control points (processors or 
memories) or their combinations are operational or failed without distinguishing between if 
there are more than one processor or memories that could have failed. It is easy to see that 
the number of states is still small (it is exactly 84) which is much lower than 215. 
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4    Exploiting Multi-Dimensional Symmetry 
The example of the previous section shows how a 15 component system can be represented 
using exactly 36 states. The fine behavior at the time of individual failures and their handling 
can be exactly modeled with each arc in the Markov chain as each arc represents a failure of 
a processor or a memory or a BIU. For example, the fault and error handling model as used 
in the HARP tool [16] can be included without any difficulty. In this section, we develop our 
methodology to generate state space, exploring permutation symmetry in a ^-dimensional 
structure. 

Various researchers have dealt with this in different ways. Arlat and Laprie [10] consider 
state equivalences assuming only a small number of faults in multistage interconnection 
networks. Such networks with or without multiple paths are also modeled in [11, 14, 3] 
in specific manner but symmetry properties are not fully explored. Their techniques are 
not easy to generalize. Das and Bhuyan have developed combinatorial techniques to model 
multiprocessor systems, but they do not address the explicit state space generation issue. 
Chiola et al. [4] use a technique similar to the one proposed here exploiting permutational 
symmetry to model behavior of different queues in a multiprocessor system using petri nets. 
Their modeling is equivalent to a single dimension symmetry in our case. However, we are 
considering multi-dimensional systems in which one component affect the structure (and 
therefore behavior) in multiple dimensions. 

Aupperle and Meyer [2] developed a method to exploit group symmetric properties to 
reduce the state-space size. Again, our goal is the same as the one in [2] but our approach 
is different. Both approaches assume that the nodes in the system belong to a symmetric 
group. They use a group theory method. Using a set of generators for the given system's 
symmetry group, they generated a branching using the algorithm and state representation 
from [13]. The time complexity is roughly of an order 0(n5) algorithm and needs 0(n3) 
space (n = the number of states). The generators need to be identified. The branching is 
used to compute the order of the symmetry group. Then for each value of number of faults 
present, a state space representative of those many faults is searched. This step in general 
is exponential but in specific cases is shown to be 0(n8). This state space is then used to 
generate necessary transitions to complete the model of the system. That means the set of 
next states for each state is determined and appropriate transitions rates are assigned. This 
step also involve searches over the generated state space. 

In [2], all the states are generated without regard to how they are going to be used. 
Additional work is performed to add transitions to the state space. In contrast the above 
scheme, we generate states one at a time and consider only those states which belong to the 
minimized state space. Our initial state contains no fault. The next set of states contain 
exactly one fault and this set is reduced to equivalent classes. Each of these states is then 
expanded by introducing one more fault as demonstrated in Figure 6. Thus the expansion 
is slow and can be truncated any time. In our procedure, transition rates are computed at 
the same time and thus no more search is required afterwards. 

4.1    State Space and Markov Chain Generation 
We assume that the nodes in the system are connected in a ^-dimensional structure. Each 
vertex represents a node in the system. We also assume that by permuting the indices in 
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any particular dimension and renumbering the nodes and links, the structural behavior of 
the system is not affected. The system performs in the same fashion when it is in any one 
of the two states if representation of one state could be derived by permuting indices in the 
respective dimensions of the representation of the other state. All such states can be lumped 
together and represented by a single state in the Markov chain. This state is defined as the 
basic class state for that set of states. For a given system state, by using the permutation 
symmetry, we can find the corresponding basic class state, which is equivalent to the given 
state. Our goal is to keep and track only the basic class states and eliminate all the other 
states in the state space. 

To define an equivalent class of states and the corresponding basic class states, we use the 
following definitions. We denote the dimensions as dl, d2, • •'•, dk. The indices in dimension 
di vary from 1 to n^. Each node can be in an operational state (0) or a failed state (1). 
Thus the state of a node can be represented by a single bit. It is possible to generalize our 
technique to multiple-state components. The sorting and searching are on different keys like 
in [4]. This is more complicated but still manageable. However, the rewards will be worth 
the effort. We use the following state representation. 

Definition: A state is represented by a state tuple consisting of a n^i x n<ß x • • • x n^ 
matrix where each element represents the state of a node. 

Definition: A permutation (piP2> •••PN), where each pi is unique and 1 < pi < N, of set 
(12 • ■ • N) implies that 1 goes to position pi, 2 goes to position pi and so on. 

Definition: The "corners" of a fc-dimensional space are the extreme points or vertices of 
the space. 

Definition: A basic class state SBd corresponding to a given state si is obtained by 
permuting the indices in each dimension to obtain a total order on them based on a predefined 
criterion. 

Thus, state SBCi is isomorphic to state s» under permutation symmetry in each dimen- 
sion. The criterion we use to obtain the total order on indices is that all ones are moved 
towards a corner of choice. Without loss of generality, we arbitrarily choose the corner of 
choice as point (1,1, • • • 1). The nearness to a corner may be defined using various criterion. 
The criteria we use is based on counting ones (number of failures) in hyperplanes defined 
by indices of a dimension and sorting them in descending order. In case of an equal number 
of ones, we use a set of rules to break the tie and if none succeeds then we break the tie 
arbitrarily. The rules are defined in the next subsection. 

Let the permutation of indices in dimension di be denoted by Pd%. Our goal is to find a set 
of permutations Pdl, Pd2, ■ ■ •, Pdk, such that Pdk ■ ■•Pd2Pdl(si) = SBd. The permutations 
are applied on Si one at a time. To find the permutation Pdl, Pd2, •••, Pdk we proceed in 
a systematic manner. 

Note that we are assuming that we have freedom in permuting indices in each dimension 
and not the dimensions themselves. However, in some structures like the binary cube, even 
dimensions themselves can also be permuted. In some other systems, only rotational and 
not permutation symmetry within a dimension may be permissible. Thus the number of 
permutations allowed are restricted to those obtainable by a rotation only. In such cases, 
the algorithm needs to be, and can be, modified suitably. It should be noted that in such 
cases, the reduction in the state space size may remain small. 

In the approach below, we start with one state at a time, generate all the next possible 
states to that state and reduce the generated states to the basic classes using the permutation 



symmetry. We continue the procedure until no more states are added in the generated set. 
This procedure is similar to the one used in [1, 15]. The state space generation process 
proceeds in a systematic manner such that the newly added states have one more fault than 
its predecessor state. This allows the truncation of the state space by terminating addition 
of states once the state representation satisfies certain specific criteria such as the number 
of faults exceeding a certain given value. Also, note that the state space is symmetrical for 
/ and n — f faults where n is the total number of components. The state space generation 
process is outlined below. In the following, t{ and r, represent a failure and repair rate or 
a forward and reverse transition rate in general. Moreover, the set Ts contain all possible 
transitions, each caused by failure of a single node only. 

Procedure GenerateSS&MC 

begin 

1. S <— SQ ; so is initial state 

2. While S contains an unmarked state do { 

(a) Select the next unmarked state s and mark it 

(b) Find Transition Set Ts = {(si,£j,rj)} ;s; is a next state of s with transition rate 
ti and j-j is the transition rate from Si to s 

(c) For each transition tr{ = (sj,ij) € Ts, 

i. Reduce state Si to basic class SBCi 

ii. If SBd <Z S then S = S U {SBQ} 

iii. Add transition from s to SBCi with rate U 

iv. Add * the transition from SBCi to s with rate r-j 
/* If a transition already exists then the rates are added together */ 

}end while 

end Procedure GenerateSS&MC 

In the process above, a state s considered in Step 2a is a basic class state and injection 
of a fault affects the structure of the state in a specific manner and at a specific location. 
This information can be used to speed up the reduction process in step 2c(i). However, the 
algorithm in Section 4.2 does not assume that the given state has any structure. Thus it 
is a general solution for a fc-dimensional structure. Also, in Steps 2c(iii) and 2c(iv), there 
may be more than one transition added from a state s to SBCi or vice versa. All these 
transitions are lumped together to one transition with the transition rate equal to the sum 
of all the rates. 

JCare should be taken when implied failures are present but state of all system components are not explicitly 
included in the state representation. For example, in Meshkin suppose a BIU fails and then the corresponding 
column processor or row memory fails. The second failure will dominate in the state space representation as all 
BIUs in a column or row are marked failed. In such situations state space representation must include all repairable 
components. Note that we can still take advantage of the permutation symmetry. For example, in Meshkin it will 
be a 4 x 4 system but symmetry is defined for three rows and three columns only. 
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Number of States. The actual number of states we need to consider is about \S\m 
where \S\ is the number of states in the final set and m is the average number of nodes 
whose failure is considered in each state. Moreover, since s, has one more fault than s, the 
search for SBCi £ S can be restricted in the relevant range of S. 

We start with an initial state so where all the components are operational. This state is 
also a SBC. State so is considered for failure of individual components, (as shown in Figure 
6). All these transitions belong to set Ts. Thus, Ts for s = so consists of N states where N 
is the total number of components in the systems. These will be reduced to SBC with one 
failure. We denote the number of SBC states with i failures by K{. Obviously, KQ = 1. For 
the Meshkin example, Ts for s = so is 15 as there are 15 components that can fail. After 
reducing these states, we are left with K\ states with one component failure. Note here that 
due to implied failure, a single component failure may be viewed as multiple node failures 
in the representation. In the next step, these states are considered for further failures and 
so on. The total number of states is Y^Zo Ki- However, the total number of states that 
need to be reduced to SBC is considerably larger and is given by 

i=N 
Y,Ki*(N- i). 
i=0 

This is because each state with i failed components will have N — i operational components 
whose failures need to be considered. This gives rise to N — i next states. 

Pitfall. Our heuristic algorithm does find an appropriate set of permutations in most 
cases. However, it is possible that states s\ and S2 are equivalent to the same basic class 
state, but our algorithm does not detect that in some very specific situations. We will 
demonstrate such specific situations in one of the example later on. However, the point to 
note here is that even if we do not succeed in all cases, we still achieve a significant reduction 
in the size of the state space. Moreover, the two representations of the same SBC state, 
when considered to include successive states, may produce the same next states (SBCs). 
Also notice that it has no implication on the accuracy of the solution and the two states will 
have state occupation probabilities such that their sum will correspond to the single state 
occupation probability. Since rewards are identical for the two representations, the total 
reward will also be computed correctly. 

4.2    Algorithm for Reduction to a Base Class 
Algorithm GBCP( s(dl, d2, ■ ■ ■, dk),k) reduces a ^-dimensional state into a basic class state 
representation. We first define a subcube of a cube as follows. 

Definition: A subcube of a cube is a sub-structure where a set of indices in each dimension 
vary only in a sub-interval. 

For example, a subcube denoted by SC(dl = *,•••, di = {a..ß), ■ ■ •, dk = *) is a subcube 
where dj, j ^ i varies between 1 and n^- and di varies between a and ß. This is a smaller 
structure derived from the given structure. The number of ones in a subcube SC is denoted 
by N(SC). In the notation, if di = * we drop it in writing. Also, if a = ß, then we only 
write it once. Thus, SC(di = aij) represents a subcube where di = aij and the indices in 
other dimensions can assume any value in their full range. 
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ALGORITHM: GET BASIC CLASS PERMUTATION GBCP(s(dl,d2r--,dk),k) 

begin 

1. Obtain Partial order and partition sets PTdi in each dimension using the following steps. 

(a) Obtain count N(SC(di = ay)) for i = 1 to k and ay = 1 to ndi. 

(b) Permute indices and obtain partial order in dimension di by sorting N(SC(di = a^)) 
for j = 1 to ndi. 

(c) Using sorting, partition in each dimension di to obtain PTdi. 

2. If k = 1 then go to Step 5. 

3. Let Imax = k + k%2. Imax is an even number > k. 

4. For I = 1,3, • • •, £ma:r Do 

IfZ<Jfe 
Then call Partition-two(m(nd/,nd(m)), PTdh PTd(l+1)) 

Else call Partition-two(m(nd(;_i,7id;), PTd(i-i), PTd{). 

5. Return PTdu ■ ■ •, PTdk. 

end 

Figure 7: Algorithm to obtain basic class permutation. 

The algorithm consists of two steps. In the first step, we obtain a partial order on the 
indices in each dimension separately. The algorithm first counts ones in subcubes defined by 
di = ctij for i = 1, • • •, k and ay = 1, • • ■, nd{. Then it permutes (renumbers) indices in each 
dimension di such that N(di = ay) > N(di = a^) for ay < a^ by sorting the counts for 
indices in each dimension di in descending order. This yields a partial order on the indices 
in each dimension. 

In the next step, we obtain a total order in each dimension to obtain a basic class state 
representation for the given state. For k = 1, no further basis exists to obtain a complete 
order. Therefore, the algorithm terminates. For k > 1, the algorithm continues to work 
choosing two dimensions at a time. The dimensions are chosen in a specific order (the order 
itself is chosen arbitrarily). Without loss of generality, we choose d\ as the first dimension, 
d2 as the next, and so on. Thus, dimension dk is considered last. 

The algorithm divides the indices in each dimension di for i = 1, • • •, k to form subcubes 
such that subcubes for all indices in that dimension in a partition have the same number of 
ones. The sizes of partitions will obviously vary. The partition in dimension di is denoted by 
PTdi and is {pdi\,pdi2, ■ ■ ■ ,pdini} such that for all values of di in subset pdij, N(SC(di = 
aij\aij £ pdij)) are the same. \PTd{\ denotes the number of elements in PTd{. For example, 
after sorting in dimension di, if N(di = ay) = 5, 5, 4, 3, 3, 3, respectively, for ay = 1 
to 6, then the indices in dimension di are partitioned to obtain PTdi = {(1,2), (3), (4,5,6)} 
with|PTdi| = 3. 

The algorithm in Figure 7 describes the pseudo code for the steps to get a basic class 
permutation. It calls Algorithm Partition-two, described in Figure 8, several times to 
partition two dimensions at a time. 
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Algorithm: Partition-two (m(nda,ndb), PTda, PTdb) 

begin 

1. IF (|PTda| = 1) AND (\PTdb\ = 1) AND  ((nda > 1) OR (ndb > 1)) 

THEN Select   (one of)  the largest element mcd of m(nda,ndb) and 
Use row c and column d to obtain partitions PTda     =     {(c) • • •} and PTdb    = 

{(d)...}). 

2. i = 1; j = 1.    /* Select the first element of each set */ 

3. WHILE  (\PTda\ < nda OR \PTdb\ < ndb) DO { 

Select ith element of PTda, pdai, and jth element of PTdb, pdbi 

IF (|pdoj| = 1) /* Single element forces a partition */ 

THEN { 

k = j; 

WHILE (k ? \PTdb\) DO { 

IF  (\pdbk\ > 1) 

THEN { 

carray(\pdbk\) = m(i,\pdbk\);  /* Count in subcube */ 

PTC = GBCP(carray(\pdbk\), 1); /* Partition the subset */ 
Replace pdbk by PTC in PTdb; 

k = k+ \PTC\ - 1;  }       /* end THEN */ 

ELSE k = k + 1;  }      /* end WHILE */ 
i = i + 1;   }       /* end THEN */ 

ELSE IF  (\pdbj\ = 1) THEN /* Single element forces a partition */ 
k = i; 

WHILE (k i> \PTda\) DO { 

IF  (\pdak\ > 1) 
THEN { 

carray(\pdak\) = m(\pdak\,j);  /* Count in subcube */ 

PTC = GBCP(carray{\pdak\),l); /* Partition the subset */ 
Replace pdak by PTC in PTda; 

k = k + \PTC\ - 1;  }       /* end THEN */ 

ELSE k = k + 1;  }      /* end WHILE */ 
j =j + l;  }       /* end THEN */ 

ELSE { 

carray(\pda,i\,\pdbj)       =       m(\pdai\,\pdbj\);  /* Else partition two-dimension 
subcube */ 

PTc,PTd = GBCP (carraydpdoiUpdbjl)^); 

Replace pdoi by PTC in PTda and pdbj by PTd in PTdb;  } 

} 

end 

Figure 8: Algorithm to find total order in two dimensions. 



The goal of the Algorithm Partition-two is to obtain a total order in the chosen two 
dimensions da and db by permuting and partitioning each element in partition set PTda 

and PTdb so that each element consists of only one index value. At the end of this step, 
\PTda\ = nda and \PTdb\ = n^. We start with dimensions dl and d2. For this step, 
we define a two dimensional matrix m(nda,n<fö) where each element (a,ß) is the count 
N(SC(da = a,db = /?)). The algorithm Partition-two takes the matrix m(nd0,nd6) and 
partition sets PTda and PT^b as inputs. 

Algorithm Partition-two finds sub-partitions in dimensions da and db by considering 
one element from each of the partitioned sets of the two dimensions starting with the first 
element from each set. It uses them to induce further order in the dimensions until no further 
progress can be made. Then the algorithm moves to next element in the appropriate set. 
Each time an element pdaQ is further partitioned in pdaai, pdaa2, • • •, pdaac, it is replaced 
by the sub-partitions while maintaining the sequence in PTda, the elements of the set PTda 

are renumbered and the count \PTda\ is updated appropriately by c — 1. The algorithm 
returns PTda and PTdb with total order. 

If the whole set in both dimension consists of only one element whose values are greater 
than one, then the algorithm forces a partition in each dimension by selecting the largest 
element in matrix m and using the indices of that element as the first index for partition in 
each dimension. In case of a tie, it arbitrarily picks up one of the elements. This is the first 
step in the description. 

If any of the first elements in both dimensions have only one index, that index is used 
to induce a further partition in the other dimension. Algorithm GBCP() is used to create 
the partition in that dimension. If any partition is induced, that is included in partition 
sets PTda or PT^b-, respectively, and the algorithm is repeated. If the first elements in both 
sets consist of more than one index, then again algorithm GBCP() is called to induce 
a partition in a smaller structure defined by the two sub-partitioned only. This smaller 
structure consists of parts of the rows and columns which have the same sums in all rows 
and in all columns. This 2-dimensional space is further partitioned using the two dimensional 
subspaces as shown in Figure 9. In the first step, dimension dl and d2 has four and three 
partitions, respectively. In the next step, we choose the first partition of each partition set 
and recurse through the process. The algorithm terminates when both dimensions achieve 
the required partitions. 

4.3    Examples 

To demonstrate the above algorithm, we use several examples. In our first example, a state 
in a three dimensional structure is shown in Figure 10. Using the first step of counting 
in Figure 10 counts in dimension are (7, 5, 7, 5) for d3 = 1, 2, 3, and 4, respectively. 
Similarly, the counts in dimension d2 are (5, 8, 8, 3) and in dimension dl are (4, 8, 8, 4) 
for respective indices. Thus example state in row of 1 Figure 10 is permuted in dimension 
d3 using permutation (13 2 4). Similarly the state is permuted in dimension d2 using 
permutation (3 2 14) and in dimension dl using permutation (3214). The resultant state 
is shown in row 2 of Figure 10 in dimensions dl and d2 only with elements as count of number 
of ones in dimension d3. This creates PTdl = {(1,2), (3,4)}, PTd2 = {(1,2), (3), (4)} and 
PTaz = {(1,2), (3,4)}. After that, we start with dimensions dl and <22 and call algorithm 
Partition-two. That algorithm starts with a 2 x 2 substructure and permute dimensions 
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Figure 9: Partition and arrangement of two dimensional space 

dl and dl as (2 1) and (2 1) using the algorithm GBCP() and also partitions the indices 
in each dimension. Next, it considers partitions with dl = (34) and d2 = (1) and further 
partitions sub-partition (3,4) into (3) and (4) in dimension dl. At this point, the partitions 
in d3 and d2 is complete. Then the algorithm works with dimensions d2 and d3. d2 is already 
partitioned and dimension d3 consists of two partitions (1,2) and (3,4) (after renumbering). 
Dimension d2 is used to impose a partition on partitions of d3. The first element in PT^ 
induces an order in sub-partitions in PT<ß. The resultant partitions are shown in the last 
row of Figure 10. 

In our second example, we have counts in all subcubes in each dimension as 8 (as shown 
in Figure 11). In this case no obvious partitioning is possible. In dimension dl-d2, we force a 
partition by picking up the largest element. We have two choices and we pick one arbitrarily 
at location (2, 3). Then we sort the elements in row 2 and column 3. That induces a 
partition and we get a complete order in dimension dl and d2. Notice that choosing an 
alternate value yields a state that is symmetrical with respect to the chosen one along a 
diagonal (that is why, sometimes, we may not reach the same state.) Using this partition, 
we still cannot induce any more partitions and force an arbitrary partition in dimension d3. 

A more complex four dimension example is shown in Figure 12. In this example n^i = 2, 
"nd2 = 2, n„d3 = 4, and nnd4 = 4. For each value of d3 and d4, dl and d2 is a 2 x 2 matrix 
as shown in the figure. Working on 2 dimensions at a time, we get a partition as shown in 
the Figure 12 in a straightforward manner. 

4.4 State Spaces Sizes for Systems with Permutation Sym- 
metry 

Now, we consider the sizes of the complete state spaces for larger systems. We choose 2- 
dimensional crossbar and hypercube (binary cube) systems. For a 3 x 3 crossbar, Table 1 
lists all possible states one can generate. There are a total of 36 states which are same as 
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Figure 10: Example 1: A state and its transformation in a 4 x 4 x 4 system 
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Figure 11:  Example 2:  A partition with equal counts in all dimension.   It needs an element 
selection for further arrangement. 
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Use d4:(l), d3:(l 2 3) 
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Partition d3: (2 3) -> (2) (3) 

Figure 12: Example 3: A state transformation in 4-dimensions. 

shown in Figure 4. For a 4 x 4 crossbar, we list all possible states in tables 2 to 7 for various 
node failures in the system. There are exactly 380 states in the system. If we compare them 
with actual number of possible states, this is a significant reduction. We could possibly have 
up to 216 states. Thus we achieve a 99.5% reduction in the number of states. We also list 
the actual arrangements of these states in Tables 8 to 11. Notice that we are not permuting 
dimensions themselves but within each dimension only. 

The other system we consider is 3-dimensional 2x2x2 crossbar structures with per- 
mutation symmetry. It can have up to 28 = 256 states that can be reduced to 46 states. 
The representative states are listed in Table 12. Notice that if it was a 3-binary cube then 
we also have symmetry in dimensions as well. Then the number of states can be further 
reduced to 22. For example, two faults states (02;11;02), (11;02;02), and (02;02;11) in the 
set of 46 states are equivalent under dimensional symmetry. Thus, they can be represented 
by only one state. Since there are exactly two choices in each dimension, it is relatively 
simpler to identify equivalent states. Majorization techniques [6] can be used to permute 
within dimensions after using the technique of the previous section with each dimension. 

5    Conclusions 
We have presented a techniqueto reduce the size of the state space associated with analysis of 
a large class of systems which are designed using a regular interconnected topology. We have 
also presented an algorithm to generate the states as well the Markov chain. In such systems, 
the relative position of a node is of no importance. We exploit permutation and rotation 
symmetries present in the system to our advantage in state space generation. Analysis of 
such systems, combinatorially or otherwise, may result in large number of system states. 
We demonstrated the reduction in largeness of the state space using several examples. We 
also presented an algorithm to identify equivalent states. The resulting much smaller state 
space allows analysis of very large systems.  We believe that our technique is going to be 
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Table 1: Arrangements in 3 x 3 Crossbar with Permutation Symmetry 

S.N. No. of Failures Row Conf Col Conf Combinations 
01 Oor 9 (0, 0, 0) (0, 0, 0) 1 
02 1 or 8 (0, 0, 1) (0, 0, 1) 1 
03 
04 
05 

2 or 7 
2 or 7 
2 or 7 

(0, 0, 2) 
(0, 1, 1) 
(0, 1, 1) 

(0, 1, 1) 
(0, 0, 2) 
(0, 1, 1) 

1 
1 
1 

06 
07 
08 
09 
10 
11 

3 or 6 
3 or 6 
3 or 6 
3 or 6 
3 or 6 
3 or 6 

(0, 0, 3) 
(0, 1, 2)' 
(0, 1, 2) 

(!> 1, 1) 
(1, 1, 1) 

(!> 1, 1) 

(1> 1, 1) 
(0, 1, 2) 
(1, 1, 1) 
(0, 0, 3) 
(0, 1, 2) 

(!. 1. 1) 

1 
1 
1 
1 
1 
1 

12 
13 
14 
15 
16 
17 

4 or 5 
4 or 5 
4 or 5 
4 or 5 
4 or 5 
4 or 5 

(0, 1, 3) 
(0, 2, 2) 
(0, 2, 2) 
(1, 1, 2) 
(1, 1, 2) 
(1, 1, 2) 

(1, 1, 2) 
(0, 2, 2) 
(1, 1, 2) 
(0, 1, 3) 
(0, 2, 2) 
(1, 1, 2) 

1 
1 
1 
1 
1 
2 

Table 2: Arrangements in 4 x 4 Crossbar with Permutation Symmetry(0 to 3 failures) 

S.N. No. of Failures Row Conf. Col Conf Combinations 
01 Oor 16 (0, 0, 0, 0) (0, 0, 0, 0) 1 
02 lor 15 (0, 0, 0, 1) (0, 0, 0, 1) 1 
03 
04 
05 

2 or 14 
2 or 14 
2 or 14 

(0, 0, 0, 2) 
(0, 0, 1, 1) 
(0, 0, 1, 1) 

(0, 0, 1, 1) 
(0, 0, 0, 2) 
(0, 0, 1, 1) 

1 
1 
1 

06 
07 
08 
09 
10 
11 

3 or 13 
3 or 13 
3 or 13 
3 or 13 
3 or 13 
3 or 13 

(0, 0, 0, 3) 
(0, 0, 1, 2) 
(0, 0, 1, 2) 
(0, 1, 1, 1) 
(0, 1, 1, 1) 
(0, 1, 1, 1) 

(0, 1, 1, 1) 
(0, 0, 1, 2) 
(0, 1, 1, 1) 
(0, 0, 0, 3) 
(0, 0, 1, 2) 
(0, 1, 1, 1) 

1 
1 
1 
1 
1 
1 
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Table 3: Arrangements in 4 x 4 Crossbar with Permutation Symmetry(4 failures) 

S.N. No. of Failures Row Conf Col Conf Combinations 
01 4 or 12 (0, 0, 0, 4) (1, 1, 1, 1) 1 
02 
03 

4 or 12 
4 or 12 

(0, 0, 1, 3) 
(0, 0, 1, 3) 

(0, 1, 1, 2) 
(1, 1, 1, 1) 

1 
1 

04 
05 
06 

4 or 12 
4 or 12 
4 or 12 

(0, 0, 2, 2) 
(0, 0, 2, 2) 
(0, 0, 2, 2) 

(0, 0, 2, 2) 
(0, 1, 1, 2) 
(1, 1, 1, 1) 

1 
1 
1 

07 
08 
09 
11 

4 or 12 
4 or 12 
4 or 12 
4 or 12 

(0, 1, 1, 2) 
(0, 1, 1, 2) 
(0, 1, 1, 2) 
(0, 1, 1, 2) 

(0, 0, 1, 3) 
(0, 0, 2, 2) 
(0, 1, 1, 2) 
(1, 1, 1, 1) 

1 
1 
2 
1 

12 
13 
14 
15 
16 

4 or 12 
4 or 12 
4 or 12 
4 or 12 
4 or 12 

(1, 1, 1, 1) 
(1, 1, 1, 1) 
(1, 1, 1, 1) 
(1, 1, 1, 1) 
(1, 1, 1, 1) 

(0, 0, 0, 4) 
(0, 0, 1, 3) 
(0, 0, 2, 2) 
(0, 1, 1, 2) 
(1, 1, 1, 1) 

1 
1 
1 
1 
1 

Table 4: Arrangements in 4 x 4 Crossbar with Permutation Symmetry (5 failures) 

S.N. No. of Failures Row Conf Col Conf Combinations 
01 5 or 11 (0, 0, 1, 4) (1, 1, 1, 2) 1 
02 
03 

5 or 11 
5 or 11 

(0, 0, 2, 3) 
(0, 0, 2, 3) 

(0, 1, 2, 2) 
(1, 1, 1, 2) 

1 
1 

04 
05 
06 

5 or 11 
5 or 11 
5 or 11 

(0, 1, 1, 3) 
(0, 1, 1, 3) 
(0, 1, 1, 3) 

(0, 1, 1, 3) 
(0, 1, 2, 2) 
(1, 1, 1, 2) 

1 
1 
2 

07 
08 
09 
10 

5 or 11 
5 or 11 
5 or 11 
5 or 11 

(0, 1, 2, 2) 
(0, 1, 2, 2) 
(0, 1, 2, 2) 
(0, 1, 2, 2) 

(0, 0, 2, 3) 
(0, 1, 2, 2) 
(0, 1, 1, 3) 
(1, 1, 1, 2) 

1 
2 
1 
2 

11 
12 
13 
14 
15 

5 or 11 
5 or 11 
5 or 11 
5 or 11 
5 or 11 1—

» 
  
 1

—
» 

  
 h

->
  

  
h

-»
  

  
1—

» 

t—
* 
  
 1

—
» 

  
 t

—
1
  

  
1—

> 
  
 1

—
» 

to
 

to
 

to
 

to
 

to
 

(0, 0, 1, 4) 
(0, 0, 2, 3) 
(0, 1, 1, 3) 
(0, 1, 2, 2) 
(1, 1, 1, 2) 

1 
1 
2 
2 
2 
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Table 5: Arrangements in 4 x 4 Crossbar with Permutation Symmetry(6 failures) 

S.N. No. of Failures Row Conf' Col Conf Combinations 
01 6 or 10 (0,0 , 2 >4) (1, 1 , 2 »2) 1 
02 
03 

6 or 10 
6 or 10 

(0,1 
(0, 1 

, 1 
, 1 

>4) 
,4) 

(1> 1 
(1, 1 

, 1 
,2 

.3) 
,2) 

1 
1 

04 
05 

6 or 10 
6 or 10 

(0,0 
(0,0 

,3 
,3 

>3) 
>3) 

(0,2 

(1, 1 

,2 
2 
,2) 

2) 
1 
1 

06 
07 
08 
09 

6 or 10 
6 or 10 
6 or 10 
6 or 10 

(0, 1 
(0, 1 
(0, 1 
(0, 1 

,2 
, 2 
, 2 

2 

>3) 
,3) 

3) 
3) 

(0,1 
(0,2 
(1, 1 

(!. 1 

2 
2 
1 
2 

3) 
2) 
3) 
2) 

1 
1 
1 
3 

10 
11 
12 
13 
14 

6 or 10 
6 or 10 
6 or 10 
6 or 10 
6 or 10 

(0,2 
(0,2 
(0,2 
(0,2 
(0,2 

2 
2 
2 
2 
2 

2) 
2) 
2) 
2) 
2) 

(0,0 
(0, 1 
(0, 2 
(1, 1 

(1. 1 

3 
2 
2 
1 
2 

3) 
3) 
2) 
3) 
2) 

1 
1 
1 
1 
2 

15 
16 
17 
18 
19 

6 or 10 
6 or 10 
6 or 10 
6 or 10 
6 or 10 

(1, 1 

(1. 1 
(1, 1 
(1, 1 
(1, 1 

1 
1 
1 
1 
1 

3) 
3) 
3) 
3). 
3) 

(0, 1 
(0, 1 
(0,2 

(1> 1 
(1. 1 

1 
2 
2 
1 
2 

4) 

3) 
2) 
3) 
2) 

1 
1 
1 
2 
2 

20 
21 
22 
23 
24 
25 
26 

6 or 10 
6 or 10 
6 or 10 
6 or 10 
6 or 10 
6 or 10 
6 or 10 

(1, 1 
(1, 1 
(1, 1 
(1, 1 

(1, 1= 
(1, 1 
(1, 1, 

2 
2 
2 
2 
2 
2 
2, 

2) 
2) 
2) 
2) 
2) 
2) 
2) 

(0,0 
(0, 1 
(0,0, 
(0, 1, 
(0, 2, 

(1, 1, 
(1, 1> 

2 
1 
3 
2, 
2, 
1, 
2, 

4) 
4) 
3) 
3) 
2) 
3) 
2) 

1 
1 
1 
3 
2 
2 
5 

20 



Table 6: Arrangements in 4 x 4 Crossbar with Permutation Symmetry(T failures) 

S.N. No. of Failures Row Conf Col Conf Arrangments 
01 Tor 09 (0 0 3 4) (1 2 2 2) 1 
02 
03 

Tor 09 
Tor 09 

(0 
(0 

1 
1 

2 
2 

4) 
4) 

(1 
(1 

1 
2 

2 
2 

3) 
•2) 

1 
1 

04 
05 
06 

Tor 09 
Tor 09 
Tor 09 

(o 
(0 
(0 

1 
1 
1 

1 
1 
1 

4) 
4) 
4) 

(1 
(1 

(0 

1 
1 
2 

1 
2 
2 

4) 
3) 
2) 

1 
1 
1 

0T 
08 
09 

Tor 09 
Tor 09 
Tor 09 

(0 
(0 
(o 

1 
1 
1 

3 
3 
3 

3) 

3) 
3) 

(0 
(1 
(1 

2 
1 
2 

2 
2 
2 

3) 
3) 
2) 

1 
1 
2 

10 
11 
12 
13 

Tor 09 
Tor 09 
Tor 09 
Tor 09 

(0 
(0 
(0 
(o 

2 
2 
2 
2 

2 
2 
2 
2 

3) 
3) 
3) 
3) 

(o 
(o 
(1 
(1 

1 
2 
1 
2 

3 
2 
2 
2 

3)' 
3) 
3) 
2) 

1 
1 
2 
2 

14 
15 
16 
IT 
18 
19 

Tor 09 
Tor 09 
Tor 09 
Tor 09 
Tor 09 
Tor 09 

(1 
(1 
(1 
(1 
(1 
(1 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 

3) 
3) 
3) 
3) 
3) 
3) 

(o 
(1 
(o 
(o 
(1 
(1 

1 
1 
1 
2 
1 
2 

2 
1 
3 
2 
2 
2 

4) 
4) 
3) 
3) 
3) 
2) 

1 
1 
1 
2 
5 
5 

20 
21 
22 
23 
24 
25 
26 

Tor 09 
Tor 09 
Tor 09 
Tor 09 
Tor 09 
Tor 09 
Tor 09 

(1 
(1 
(1 
(1 
(1 
(1 
(1 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

2) 
2) 
2) 
2) 
2) 
2) 
2) 

(o 
(o 
(1 
(0 
(o 
(1 
(1 

0 
1 
1 
1 
2 
1 
2 

3 
2 
1 
3 
2 
2 
2 

4) 
4) 
4) 
3) 
3) 
3) 
2) 

1 
1 
1 
2 
2 
5 
3 

21 



Table 7: Arrangements in 4 x 4 Crossbar with Permutation Symmetry(8 failures) 

S.N. No. of Failures Row Conf Col Conf Arrangments 
01 8 (0 ,0 ,4 , 4) (2 , 2 , 2 ,2) 1 
02 
03 

8 
8 

(0 
(0 

, 1 
, 1 

,3 
,3 

, 4) 
,4) 

(1 
(2 

, 2 
,2 

,2 

, 2 
>3) 
, 2) 

1 
1 

04 
05 
06 

8 
8 
8 

(0 
(0 
(0 

,2 
,2 

, 2 

,2 

, 2 
,2 

, 4) 

,4) 
,4) 

(1 
(1 
(2 

, 1 

, 2 
,2 

,3 
,2 

, 2 

> 3) 
>3) 
,2) 

1 
1 
1 

07 
08 
09 
10 

8 
8 
8 
8 

(1 
(1 
(1 
(1 

, 1 
, 1 
, 1 

1 

,2 
,2 
,2 

2 

,4) 
,4) 

,4) 
>4) 

(1 
(1 
(1 

(2 

, 1 
, 1 

,2 
2 

, 2 
,3 
,2 
,2 

>4) 

3) 
3) 
2) 

1 
1 
2 
1 

11 
12 
13 
14 

8 
8 
8 
8 

(0 
(0 
(0 
(o 

2 
2 
2 
2 

2 
2 
2 
2 

>3) 
>3) 

3) 
3) 

(0 
(1 
(1 

(2 

2 
1 
2 
2 

2 
3 
2 
2 

3) 
3) 

3) 
2) 

1 
1 
2 
1 

15 
16 
17 
18 
19 
20 

8 
8 
8 
8 
8 
8 

(1 
(1 
(1 
(1 
(1 
(1 

1 
1 
1 
1 
1 
1 

3 
3 
3 
3 
3 
3 

3) 
3) 
3) 

3) 
3) 
3) 

(0 
(1 

(o 
(1 
(1 
(2 

2 
1 
2 
1 
2 
2 

2 
2 
3 
3 
2 
2 

4) 
4) 
3) 
3) 
3) 
2) 

1 
1 
1 
1 
3 
2 

21 
22 
23 
24 
25 
26 
27 

8 
8 
8 
8 
8 
8 
8 

(1 
(1 
(1 
(1 
(1 
(1 
(1 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

3) 
3) 
3) 
3) 

3) 
3) 
3) 

(0 
(o 
(1 

(0 
(1 

(1- 
(2 

1 
2 
1 
2 
1 
2 
2 

3 
2 
2 
3 
3 
2 
2 

4) 
4) 
4) 
3) 
3) 
3) 
2) 

1 
1 
2 
3 
3 
8 
2 

28 
29 
30 
31 
32 
33 
34 
35 o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

 

(2, 
(2, 
(2, 
(2, 
(2, 
(2, 
(2, 
(2, 

2, 
2, 
2, 
2, 
2, 
2, 

2, 
2, 

2 
2 
2 
2 
2, 

2, 
2, 
2, 

2) 
2) 
2) 
2) 
2) 

2) 
2) 

2) 

(o, 
(o, 
(0, 
(1, 

(o> 
(1, 
(1, 
(2, 

0 
1, 

2, 
1, 

2, 
1, 
2, 

2, 

4 

3, 
2, 
2, 
3, 
3, 
2, 
2, 

4) 
4) 
4) 

4) 
3) 
3) 

• 3) 

2) 

1 
1 
1 
1 
1 
2 
2 
3 

22 



Table 8: Actual Arrangements in 4 x 4 Crossbar with Permutation Symmetry(8 failures) 

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col 
Ü044 
2222 

0134 
1223 

0134 
2222 

0224 
1133 

0224 
1223 

0224 
2222 

1111 
1111 
oooo 
oooo 

1111 
0111 
0001 
0000 

1111 
Olli 
1000 
0000 

.1111 
0011 
0011 
0000 

1111 
0011 
0101 
0000 

1111 
0011 
1100 
0000 

1124 
1124 

1124 
1133 

1124 
1223 

1124 
1223 

1124 
2222 

1111 
0011 
0001 
0001 

1111 
0011 
0001 
0010 

1111 
0011 
0001 
0100 

1111 
0110 
0001 
0001 

1111 
.0011 
0100 
1000 

0233 
0233 

0233 
1133 

0233 
1223 

0233 
1223 

0233 
2222 

1133 
0224 

0111 
0111 
0011 
oooo 

0111 
1011 
0011 
0000 

Olli 
Olli 
1001 
0000 

Olli 
1011 
0101 
0000 

Olli 
1011 
1100 
0000 

Olli 
Olli 
0001 
0001 

1133 
1124 

1133 
0233 

1133 
1133 

1133 
1223 

1133 
1223 

1133 
1223 

1133 
2222 

1133 
2222 

0111 
1011 
0001 
0001 

0111 
0111 
0001 
0010 

Olli 
1011 
0001 
0010 

Olli 
Olli 
0001 
1000 

Olli 
1011 
0001 
0100 

Olli 
1110 
0001 
0001 

Olli 
Olli 
1000 
1000 

Olli 
1011 
0100 
1000 

1223 
0134 

1223 
0224 

1223 
1124 

1223 
1124 

1223 
0233 

1223 
0233 

1223 
0233 

1223 
1133 

0111 
0011 
0011 
0001 

0111 
0011 
0101 
0001 

Olli 
0011 
1001 
0001 

1101 
0011 
0011 
0001 

Olli 
0011 
0011 
1000 

Olli 
0011 
0011 
0100 

Olli 
0101 
0011 
0010 

Olli 
0011 
0011 
1000 

1223 
1133 

1223 
1133 

1223 
1223 

1223 
1223 

1223 
1223 

1223 
1223 

1223 
1223 

1223 
1223 

0111 
0011 
1001 
0010 

1101 
0011 
0011 
0010 

Olli 
0011 
0101 
1000 

Olli 
0011 
1001 
0100 

1011 
0011 
0101 
0100 

Olli 
0011 
1100 
0001 

Olli 
1001 
0110 
0001 

1011 
0101 
0101 
0010 

1223 
1223 

1223 
1223 

1223 
2222 

1223 
2222 

2222 
0044 

2222 
0134 

2222 
0224 

2222 
1124 

1011 
0101 
0110 
0001 

1110 
0011 
0101 
0001 

Olli 
1001 
0110 
1000 

Olli 
1001 
1010 
0100 

0011 
0011 
0011 
0011 

0011 
0011 
0011 
0101 

0011 
0011 
0101 
0101 

0011 
0011 
0101 
1001 

2222 
0233 

2222 
1133 

2222 
1133 

2222 
1223 

2222 
1223 

2222 
2222 

2222 
2222 

2222 
2222 

0011 
0011 
0101 
0110 

0011 
0011 
0011 
1100 

0011 
0011 
0101 
1010 

0011 
0011 
0101 
1100 

0011 
0101 
1001 
0110 

0011 
0011 
1100 
1100 

0011 
1001 
0110 
1100 

0011 
0101 
1010 
1100 

23 



Table 9: Actual Arrangements in 4 x 4 Crossbar with Permutation Symmetry(7 failures) 

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col 

0034 
1222 

0124 

1123 

0124 
1222 

1114 
1114 

1114 
1123 

1114 
1222 

1111 

0111 
0000 
0000 

1111 
0011 
0001 
0000 

1111 
0011 
0100 
0000 

1111 
0001 
0001 
0001 

1111 

0001 
0001 
0010 

1111 
0001 
0010 
0100 

0133 

0223 

0133 

1123 

0133 
1222 

0133 
1222 

0111 

0111 

0001 

0000 

0111 

1011 

0001 

0000 

0111 

0111 

1000 

0000 

0111 

1011 

0100 

0000 

0223 

0133 

0223 

0223 

0223 

1123 

0223 

1123 

0223 

1222 

0223 

1222 

0111 
0011 
0011 

0000 

0111 

0011 
0101 

0000 

0111 
0011 
1001 

0000 

0111 

1001 
1001 

0000 

0111 
0011 
1100 

0000 

0111 
1001 
1010 

0000 

1123 

0124 

1123 
1114 

1123 

0133 

1123 

0223 

1123 

0223 

1123 
1123 

1123 

1123 

1123 
1123 

0111 
0011 

0001 

0001 

0111 

1001 

0001 

0001 

0111 

0011 

0001 

0010 

0111 

0011 

0001 

0100 

0111 

0110 

0001 

0001 

0111 

0011 

0001 

1000 

0111 

1001 

0001 

0010 

1101 

0011 

0001 

0010 

1123 

1123 

1123 

1123 

1123 

1222 

1123 

1222 

1123 

1222 

1123 

1222 

1123 
1222 

0111 

1010 

0001 

0001 

1110 

0011 

0001 

0001 

0111 

0011 
0100 

1000 

0111 

0011 

1000 

1000 

0111 

1001 
0010 

0100 

0111 

1001 
0010 

1000 

0111 

1001 
1000 

0010 

1222 

0034 

1222 

0124 

1222 

1114 

1222 

0133 

1222 

0133 

1222 

0223 

1222 

0223 

0011 

0011 
0011 
0001 

0011 
0011 

0101 
0001 

0011 
0101 
1001 
0001 

0011 

0011 
0011 
0100 

0011 
0011 

0101 
0010 

0011 

0011 

0101 
0010 

0011 

0101 

0110 
0001 

1222 

1123 

1222 

1123 

1222 

1123 

1222 

1123 

1222 

1123 

1222 

1222 

1222 
1222 

1222 

1222 

0011 

0011 

0101 

1000 

0011 

0011 

1100 

0001 

0011 

0101 

1001 

0100 

0011 

0101 

1001 

1000 

0011 

0101 

1100 

0001 

0011 

0011 

1100 

0100 

0011 

0101 

0110 

1000 

0011 

0101 

1100 

0010 

24 



Table 10: Actual Arrangements in 4 x 4 Crossbar with Permutation Symmetry(6 failures) 

Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col 
0024 

1122 

0114 

1113 

0114 

1122 
0033 
0222 

0033 
1122 

1111 

0011 
0000 

0000 

1111 

0001 
0001 

0000 

1111 

0001 
0010 

0000 

0111 

0111 

0000 

0000 

0111 

1011 

0000 

0000 

0123 

0123 

0123 
0222 

0123 

1113 

0123 
1122 

0123 
1122 

0123 
1122 

0111 

0011 
0001 

0000 

0111 
0011 
0100 

0000 

0111 
1001 
0001 

0000 

0111 
0011 
1000 

0000 

0111 
1001 

0010 

0000 

1101 
0011 

0010 

0000 

0222 

0033 

0222 

0123 

0222 

0222 

0222 

1113 

0222 

1122 

0222 

1122 

0011 

0011 
0011 

0000 

0011 

0011 
0101 

0000 

0011 
0101 
0110 

0000 

0011 

0101 
1001 

0000 

0011 

0011 
1100 

0000 

0011 

0101 
1010 

0000 

1113 
0114 

1113 

0123 

1113 
0222 

1113 

1113 

1113 

1113 
1113 
1122 

1113 
1122 

0111 

0001 

0001 
0001 

0111 

0001 

0001 
0010 

0111 

0001 

0010 
0100 

0111 

0001 

0001 
1000 

1110 

0001 

0001 
0001 

0111 

0001 

0010 

1000 

1101 

0001 

0010 

0010 
1122 

0024 

1122 

0114 

1122 

0033 

1122 

0123 

1122 

0123 

1122 

0123 

1122 

0222 

1122 

0222 

0011 
0011 
0001 
0001 

0011 

0101 
0001 

0001 

0011 

0011 
0001 
0010 

0011 

0011 
0001 
0100 

0011 

0101 
0001 
0010 

0011 
0110 
0001 
0001 

0011 
0011 
0100 
0100 

0011 

0101 
0010 
0100 

1122 

1113 

1122 

1113 

1122 

1122 

1122 

1122 

1122 

1122 

1122 

1122 
1122 

1122 

0011 
0101 
0001 

1000 

0011 
1100 
0001 
0001 

0011 
0011 
0100 

1000 

0101 
1010 
0001 

0010 

0011 
1100 
0001 
0010 

. 0011 
0101 
0100 
1000 

0101 
1001 
0010 
0010 

25 



Table 11: Actual Arrangements in 4 x 4 Crossbar with Permutation Symmetry(< 6 failures) 

Row/Col Row/ Col Row/Col Row/Col Row/Col Row/Col Row/Col Row/Col 

0014 0023 0023 0113 0113 0113 0113 
1112 0122 1112 0113 0122 1112 1112 

1111 0111 0111 0111 0111 0111 1110 
0001 0011 1001 0001 0001 0001 0001 
0000 0000 0000 0001 0010 1000 0001 
0000 0000 0000 0000 0000 0000 0000 

0122 0122 0122 0122 0122 0122 

0023 0122 0122 0113 1112 1112 

0011 0011 0011 0011 0011 0011 

0011 0011 0101 0101 0101 1100 

0001 0100 0010 0001 1000 0001 

0000 0000 0000 0000 0000 0000 

1112 1112 1112 1112 1112 1112 1112 1112 

0014 0023 0113 0113 0122 0122 1112 1112 

0011 0011 0011 0110 0011 0101 0011 0110 
0001 0001 0001 0001 0001 0001 0001 0001 
0001 0001 0001 0001 0010 0010 0100 0001 
0001 0010 0100 0001 0100 0010 1000 1000 

0004 0013 0013 0022 0022 0022 
1111 0112 1111 0022 0112 1111 

1111 0111 0111 0011 0011 0011 
0000 0001 1000 0011 0101 1100 
0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 
0112 0112 0112 0112 0112 1111 1111 mi 
0013 0022 0112 0112 1111 0004 0013 0022 

0011 0011 0011 0110 0011 0001 0001 0001 
0001 0001 0001 0001 0100 0001 0001 0001 
0001 0010 0100 0001 1000 0001 0001 0010 
0000 0000 0000 0000 0000 0001 0010 0010 
1111 1111 0003 0012 0012 0111 0111 0111 
0112 1111 0111 0012 0111 0003 0012 0111 
0001 0001 0111 0011 0011 0001 0001 0001 
0101 0010 0000 0001 0100 0001 0001 0010 
0010 0100 0000 0000 0000 0001 0010 0100 
0100 1000 0000 0000 0000 0000 0000 0000 
0002 0011 0011 0001 0000 

0011 0002 0011 0001 0000 

0011 0001 0001 0001 0000 

0000 0001 0010 0000 0000 

0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 

26 



Table 12: Actual Arrangements in 2 x 2 x 2 Crossbar with Permutation Symmetry 

No. pnl/pn2 pnl/pn2 pnl/pn2 pnl/pn2 pnl/pn2 pnl/pn2 pnl/pn2 
00;00;00 01;01;01 34;34;34 44;44;44 

0/1 
7/8 

00 00 
00 00 

00 00 
00 01 

01 11 
11 11 

11 11 
11 11 

02;11;02 11;02;02 11;11;02 02;02;11 11;02;11 02;11;11 11;11;11 
2 00 00 

00 11 
00 01 
00 01 

00 01 

00 10 
00 00 

01.01 

0100 

00 01 
00 00 

10 01 
10 00 

00 01 
12;13;12 12;12;12 03;12;12 12;12;12 12;12;12 12;12;12 12;12;03 

3 00 01 

01 01 
00 01 
10 01 

00 00 

01 11 
0100 
00 11 

00 01 

01 10 
00 10 

01 01 
00 01 

00 11 
22;22;22 13;13;22 13;22;22 04;22;22 22;13;13 22;22;13 13;13;13 

4 1100 
00 11 

0100 
01 11 

10 00 
01 11 

00 00 
11 11 

01 01 
00 11 

10 01 
00 11 

00 01 
01 11 

13;22;13 22;22;22 22;13;22 22;04;22 22;13;22 22;22;22 22;22;22 
4 00 10 

01 11 
00 11 
00 11 

0101 

10 01 
0101 

0101 
10 01 

01 01 
01 10 

10 01 
10 10 

0101 
23;23;23 23;14;23 23;23;23 23;23;23 23;23;23 14;23;23 23;23;14 

5 00 11 
11 01 

0101 
01 11 

0101 
10 11 

01 10 
01 11 

10 01 
01 11 

00 01 
11 11 

00 11 
01 11 

24;33;24 33;24;24 33;33;24 24;24;33 24;33;33 33;24;33 33;33;33 
6 

_______ 

00 11 
11 11 

01 11 
01 11 

10 11 

01 11 
0101 
11 11 

10 01 
11 11 

11 01 
01 11 

11 01 
10 11 

27 



very useful in analyzing large systems exactly. 
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